Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

InyCo4Sb12 Skutterudite: Phase Equilibria and Crystal Structure

Identifieur interne : 000B06 ( Main/Repository ); précédent : 000B05; suivant : 000B07

InyCo4Sb12 Skutterudite: Phase Equilibria and Crystal Structure

Auteurs : RBID : Pascal:13-0361280

Descripteurs français

English descriptors

Abstract

Phase relations were investigated for the In-Co-Sb system in the temperature range from 375°C to 800°C using as-cast and annealed alloys. Phase equilibria in the CoSb-InSb-(Sb) composition triangle are presented by a series of isothermal sections and solidus and liquidus surfaces, accompanied by a Schulz-Scheil reaction scheme. The indium-filled skutterudite InyCo4Sb12 already forms an equilibrium with liquid at 484°C, which might limit high-temperature applications of In-Co-Sb-based skutterudites. The maximal solubility of indium in InyCo4Sb12 (y = 0.22) remains almost constant in the temperature range from 475°C to 700°C and corresponds to the equilibrium with CoSb2 and InSb. The solubility of indium in the skutterudite phase is reduced to y = 0.09 when it coexists in equilibrium with InSb and (Sb), and this decrease of the solubility might be responsible for the formation of InSb precipitates. Temperature-dependent x-ray single-crystal and specific heat data for InyCo4Sb12 were employed to determine the rattling behavior of In atoms in the skutterudite lattice.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0361280

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
Skutterudite: Phase Equilibria and Crystal Structure</title>
<author>
<name sortKey="Grytsiv, A" uniqKey="Grytsiv A">A. Grytsiv</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42</s1>
<s2>1090 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1090 Wien</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10</s1>
<s2>1040 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1040 Wien</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rogl, P" uniqKey="Rogl P">P. Rogl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42</s1>
<s2>1090 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1090 Wien</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michor, H" uniqKey="Michor H">H. Michor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10</s1>
<s2>1040 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1040 Wien</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bauer, E" uniqKey="Bauer E">E. Bauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10</s1>
<s2>1040 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1040 Wien</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giester, G" uniqKey="Giester G">G. Giester</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14</s1>
<s2>1090 Wien</s2>
<s3>AUT</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1090 Wien</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0361280</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0361280 INIST</idno>
<idno type="RBID">Pascal:13-0361280</idno>
<idno type="wicri:Area/Main/Corpus">000455</idno>
<idno type="wicri:Area/Main/Repository">000B06</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anharmonic lattice modes</term>
<term>Annealing</term>
<term>Crystal structure</term>
<term>Filled skutterudites</term>
<term>High temperature</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Isothermal section</term>
<term>Liquidus</term>
<term>Monocrystals</term>
<term>Phase diagrams</term>
<term>Phase equilibria</term>
<term>Physical properties</term>
<term>Precipitates</term>
<term>Rattling mode</term>
<term>Skutterudite</term>
<term>Solubility</term>
<term>Specific heat</term>
<term>Temperature dependence</term>
<term>Temperature effects</term>
<term>Thermodynamic properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diagramme phase</term>
<term>Equilibre phase</term>
<term>Structure cristalline</term>
<term>Dépendance température</term>
<term>Recuit</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Section isotherme</term>
<term>Liquidus</term>
<term>Indium</term>
<term>Haute température</term>
<term>Solubilité</term>
<term>Précipité</term>
<term>Effet température</term>
<term>Skutterudite</term>
<term>Skutterudites remplies</term>
<term>Monocristal</term>
<term>Propriété thermodynamique</term>
<term>Chaleur massique</term>
<term>Mode vibration anharmonique</term>
<term>Propriété physique</term>
<term>6166F</term>
<term>8130B</term>
<term>6475</term>
<term>Mode hochet</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phase relations were investigated for the In-Co-Sb system in the temperature range from 375°C to 800°C using as-cast and annealed alloys. Phase equilibria in the CoSb-InSb-(Sb) composition triangle are presented by a series of isothermal sections and solidus and liquidus surfaces, accompanied by a Schulz-Scheil reaction scheme. The indium-filled skutterudite In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
already forms an equilibrium with liquid at 484°C, which might limit high-temperature applications of In-Co-Sb-based skutterudites. The maximal solubility of indium in In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
(y = 0.22) remains almost constant in the temperature range from 475°C to 700°C and corresponds to the equilibrium with CoSb
<sub>2</sub>
and InSb. The solubility of indium in the skutterudite phase is reduced to y = 0.09 when it coexists in equilibrium with InSb and (Sb), and this decrease of the solubility might be responsible for the formation of InSb precipitates. Temperature-dependent x-ray single-crystal and specific heat data for In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
were employed to determine the rattling behavior of In atoms in the skutterudite lattice.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
Skutterudite: Phase Equilibria and Crystal Structure</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GRYTSIV (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ROGL (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MICHOR (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAUER (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GIESTER (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42</s1>
<s2>1090 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10</s1>
<s2>1040 Wien</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14</s1>
<s2>1090 Wien</s2>
<s3>AUT</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2940-2952</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000501562730120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>68 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0361280</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Phase relations were investigated for the In-Co-Sb system in the temperature range from 375°C to 800°C using as-cast and annealed alloys. Phase equilibria in the CoSb-InSb-(Sb) composition triangle are presented by a series of isothermal sections and solidus and liquidus surfaces, accompanied by a Schulz-Scheil reaction scheme. The indium-filled skutterudite In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
already forms an equilibrium with liquid at 484°C, which might limit high-temperature applications of In-Co-Sb-based skutterudites. The maximal solubility of indium in In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
(y = 0.22) remains almost constant in the temperature range from 475°C to 700°C and corresponds to the equilibrium with CoSb
<sub>2</sub>
and InSb. The solubility of indium in the skutterudite phase is reduced to y = 0.09 when it coexists in equilibrium with InSb and (Sb), and this decrease of the solubility might be responsible for the formation of InSb precipitates. Temperature-dependent x-ray single-crystal and specific heat data for In
<sub>y</sub>
Co
<sub>4</sub>
Sb
<sub>12</sub>
were employed to determine the rattling behavior of In atoms in the skutterudite lattice.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A30B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A66F</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D11C02A</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60D75</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Diagramme phase</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Phase diagrams</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Equilibre phase</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Phase equilibria</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Section isotherme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Isothermal section</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="GER">
<s0>Isothermer Schnitt</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sección isotérmica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Liquidus</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Liquidus</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Liquidus</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Liquidus</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Hochtemperatur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Solubilité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Solubility</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Précipité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Precipitates</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Skutterudite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Skutterudite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Skutterubita</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Skutterudites remplies</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Filled skutterudites</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Skutterudites carga</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Propriété thermodynamique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Thermodynamic properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Chaleur massique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Specific heat</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Mode vibration anharmonique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Anharmonic lattice modes</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Propriété physique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Physical properties</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>6166F</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8130B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6475</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Mode hochet</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Rattling mode</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0361280
   |texte=   InyCo4Sb12 Skutterudite: Phase Equilibria and Crystal Structure
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024